فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    1404
  • دوره: 

    1
  • شماره: 

    1
  • صفحات: 

    41-69
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    12
  • دانلود: 

    0
چکیده: 

یکی از رویکردهای امیدوارکننده در تشخیص زورگویی سایبری استفاده از الگوریتم های یادگیری ماشین و یادگیری عمیق است. با این حال، تشخیص آزار سایبری در شبکه های اجتماعی پیچیده است و یک الگوریتم یادگیری ماشین و یادگیری عمیق به تنهایی توانایی زیادی برای تشخیص دقیق زورگویی سایبری ندارند. در این مقاله برای تشخیص زورگویی سایبری در ابتدا با سه روش استخراج ویژگیGloVe، Word2Vec و TF-IDF ویژگی های اولیه متن استخراج می شود. در مرحله دوم انتخاب ویژگی با استفاده از الگوریتم JSO انجام می شود و در نهایت ویژگی های مهم به عنوان ورودی روش 1DCNN و LSTM در نظر گرفته می شود. آزمایشات در مجموعه داده توئیتر و فیس بوک برای تشخیص زورگویی سایبری انجام می شود. آزمایشات نشان می دهد دقت، حساسیت و صحت روش پیشنهادی در تشخیص زورگویی سایبری در مجموعه داده توئیتر به ترتیب برابر 23/98 درصد، 86/97 درصد و 73/97 درصد است. نتایج نشان می دهد روش پیشنهادی نسبت به روشهای CNN، LSTM و BERT در تشخیص زورگویی سایبری دارای دقت بیشتری است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 12

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نشریه: 

KNOWLEDGE-BASED SYSTEMS

اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    181
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    100
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 100

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    20
  • شماره: 

    71
  • صفحات: 

    121-133
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    80
  • دانلود: 

    23
چکیده: 

استفاده از سامانه AHRSدقیق مبتنی برسنسورهای تکنولوژی MEMS، با حجم کم و قیمت ارزان،نقش به سزایی در ناوبری و هدایت وسایل بدون سرنشین ایفا می-کند.امروزه استفاده از الگوریتم ها و روش های گوناگون از جمله فیلترهای وفقی، شبکه های عصبی و فیلترهای تخمینگر جهت افزایش دقت این سامانه ها و کاهش نویز سنسورهای آن بسیار مورد توجه محققان قرار گرفته است.در این مقاله از ترکیب شبکه عصبی عمیق LSTM و فیلترکالمن جهت بهبود دقت سامانهAHRSاستفاده شده است. در این روش ابتدا شبکه عمیق مورد استفاده تحت آموزش قرار گرفته و سپس به عنوان یک تصحیح گر، ضرایب موثر فیلترکالمن را تصحیح می کند. این روش تمامی محدودیت های فیلتر کالمن از جمله خطی بودن و حافظه دار نبودن آن را برطرف کرده و بدون استفاده از سامانه GPSدقت زوایای خروجی را بهبود بخشیده است. نتایج این تحقیق برروی داده های واقعی سنسورIMU مبتنی بر تکنولوژی MEMSکه نسبت به سنسورهای مورد استفاده در کارهای مشابه دارای دقت کمتری بوده، نصب شده برروی هواپیمای بدون سرنشین با مانور بالا، انجام شده و بیانگر بهبود 35 درصدی دقت زوایای وضعیت سامانهAHRS و بهبود 40 درصدی کاهش نویز خروجی سنسورها می باشد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 80

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 23 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

نشریه: 

IEEE INTELLIGENT SYSTEMS

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    37
  • شماره: 

    4
  • صفحات: 

    70-78
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    16
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    14
  • شماره: 

    1
  • صفحات: 

    89-106
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    95
  • دانلود: 

    26
چکیده: 

تغییرات رشد محصولات کشاورزی در فواصل زمانی نسبتاً کوتاه، ناهم زمانی کشت محصولات مشابه، شباهت طیفی میان محصولات گوناگون در برخی از زمان های دورة کشت و کمبود داده های زمینی، طبقه بندی محصولات زراعی در تصاویر ماهواره ای را به کاری چالش برانگیز مبدل می کند. تغییر مقدار درصد پوشش و سبزینگی، در طول فصل رشد، از برجسته ترین ویژگی پوشش‏ های گیاهی ازجمله محصولات کشاورزی است که می توان بر آن نظارت کرد. این کار با استفاده از سری زمانی شاخص های گیاهی انجام می شود که اطلاعات بسیار مفیدی از توالی ویژگی های فنولوژیک محصولات کشاورزی در اختیار ما قرار می دهد. استفاده از روش های یادگیری عمیق با توانایی یادگیری اطلاعات متوالی حاصل از این سری ها می تواند، در طبقه بندی محصولات کشاورزی و کاهش وابستگی به داده های زمینی، مفید باشد. شبکةLong-Short Term Memory (LSTM) یکی از انواع شبکه های عصبی بازگشتی در تجزیه و تحلیل داده های متوالی است که توانایی یادگیری توالی های بلندمدت در سری زمانی را دارد؛ بنابراین در این مطالعه، پس از محاسبة شاخص NDVI از باندهای ماهوارة سنتینل ـ 2 در نُه تاریخ متفاوت و تشکیل سری زمانی آن شاخص برای ورود به شبکه، دو ناحیة متفاوت در دشت مغان در نظر گرفته شد که محصولات کشت شده در آنها، طی عملیات زمینی، برداشت شده بود. در ناحیة اول، شبکة کانولوشنی LSTM برای طبقه بندی محصولات آموزش دید و در ناحیة دیگر، کارآیی این شبکة آموزش دیده در طبقه بندی محصولات ارزیابی شد و دقت کلی 82% و ضریب کاپای 8/0 به دست آمد. افزایش تعداد نمونه های زمینی و انتخاب مرز دقیق محصولات، می تواند کارایی روش مورد استفاده را افزایش دهد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 95

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 26 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

طبیبیان شیما

اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    19
  • شماره: 

    1
  • صفحات: 

    1-17
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    431
  • دانلود: 

    126
چکیده: 

یکی از چالش های بازشناسی ارقام مجزای فارسی، مشابهت تلفظ برخی از ارقام مانند "صفر و سه"، "نه و دو" و "پنج، هفت و هشت" می باشد. این چالش منجر به بازشناسی یک رقم به جای رقم مشابه شده و دقت بازشناسی را کاهش می دهد. در این مقاله، یک راهکار ترکیبی مبتنی بر حافظه کوتاه مدت ماندگار (LSTM) و مدل مخفی مارکف (HMM) برای رفع چالش مذکور ارائه شده که نرخ بازشناسی ارقام فارسی مبتنی بر HMM را به طور متوسط 2% و در بهترین حالت 8% بهبود داده است. با توجه به تشدید چالش بازشناسی ارقام مشابه فارسی در شرایط نویزی، در ادامه کار مقاوم سازی بازشناسی ارقام مشابه فارسی مورد توجه قرار گرفت. به منظور افزایش مقاومت بازشناس مبتنی بر LSTM، از ویژگی های مقاوم به نویز مستخرج از طیف گفتار مانند آنتروپی طیفی، درجه از هم پاشی، فرکانس نیمساز، همواری طیفی، فرمانت اول و نرخ گذار از صفر مبتنی بر تابع همبستگی استفاده گردید. استفاده از این ویژگی ها، ضمن کاهش تعداد ویژگی ها برای بازشناسی ارقام مشابه فارسی از 39 ضریب به حداکثر 4 و حداقل 1 ضریب، به طور متوسط به ترتیب بهبود 10، 13، 15 و 13 درصدی مقاومت بازشناس ارقام مشابه را در شرایط متنوع نویزی (30 حالت مختلف حاصل از پنج نوع نویز سفید، صورتی، همهمه، کارخانه و ماشین و شش نسبت سیگنال به نویز 5-، 0، 5، 10، 15 و 20 دسی بل) در مقایسه با بازشناس های مبتنی بر HMM، LSTM، شبکه باور عمیق با ویژگی های مل کپستروم و شبکه عصبی کانولوشنی با ویژگی های مل اسپکتوگرام به همراه دارد.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 431

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 126 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    16
  • شماره: 

    3 (پیاپی 62)
  • صفحات: 

    69-88
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    1065
  • دانلود: 

    585
چکیده: 

یکی از مشکلات سیستم های بانکی، پیش بینی تقاضای وجه نقد خودپردازها است. پیش بینی صحیح می تواند به دلایل زیر باعث سودآوری سیستم بانکی و رضایت مندی مشتریان این سیستم بانکی گردد. دقت در پیش بینی، هدف اصلی این پژوهش است. اگر خودپردازها با کمبود وجه نقد مواجه شوند محبوبیت بانک ارایه دهنده این سرویس کاهش خواهد یافت و بانک با کاهش استفاده مشتریان از این سیستم مواجه خواهد شد. از طرفی دیگر اگر بانک دچار محبوس شدن وجه نقد در خودپرداز شود، با توجه به تورم در ایران، این وضعیت روی سودآوری بانک تاثیر منفی خواهد گذاشت؛ بنابراین هدف از این پژوهش، پیش بینی دقیق برای رفع هزینه های دوگانه است؛ چون اطلاعات میزان وجه نقد به صورت روزانه است، بنابراین هر خودپرداز، رفتاری به صورت سری زمانی خواهد داشت و از طرفی چون هدف ما از این پژوهش، پیش بینی میزان تقاضای وجه نقد همه خودپردازهاست، در نتیجه ما با داده هایی از نوع پنل مواجه هستیم. روش هایی که در این تحقیق برای پیش بینی مورد استفاده قرار گرفته است، عبارتند از: روش آماری، روش شبکه عصبی MLPو شبکه عصبی بازگشتی عمیق LSTM. نتایج حاصل از این سه روش را سپس مورد مقایسه قرار می دهیم و نشان می دهیم روش شبکه عصبی بازگشتی عمیق LSTM دارای بالاترین دقت است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1065

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 585 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1400
  • دوره: 

    10
  • شماره: 

    1 (پیاپی 22)
  • صفحات: 

    35-51
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    909
  • دانلود: 

    329
چکیده: 

امروزه انرژی الکتریسیته یکی از اساسی ترین نیازهای جوامع بشری محسوب می شود به گونه ای که تمام فعالیت های صنعتی و بخش زیادی از فعالیت های اجتماعی، اقتصادی، کشاورزی و. . . با اتکا به این انرژی انجام می شود، بنابراین کیفیت و تداوم انرژی الکتریسیته از اهمیت بسزایی برخوردار است. هدف این پژوهش آن است که بر اساس عوامل موثر بر بار الکتریکی که دارای روابط پیچیده غیرخطی هستند و عمدتا شامل تغییرات آب و هوا و نوسانات دوره ای روزانه و هفتگی مصرف می باشند به پیش بینی تغییرات مصرف بار کوتاه مدت دست یابد. روش پیشنهادی یک شبکه عصبی ترکیبی، با استفاده از یادگیری عمیق می باشد که از ترکیب دو معماری CNN و LSTM ایجاد شده است. معماری CNN با توجه به قابلیت آن در استخراج الگوهای موجود در داده و معماری LSTM بر پایه توانایی آن در پیش بینی سری های زمانی، مورد استفاده قرار گرفته اند. رویکرد ارایه شده با استفاده از پیش بینی آب و هوای ساعات آینده و الگوی مصرف بار الکتریکی در ساعات گذشته، قادر به پیش بینی الگوی مصرف آینده خواهد بود. نتایج ارزیابی نشان می دهد که دقت پیش بینی بر اساس معیارهای MAPE، RMSE، RSEوCORR در مقایسه با بهترین روش های موجود بهبود یافته است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 909

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 329 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1398
  • دوره: 

    17
  • شماره: 

    56
  • صفحات: 

    191-211
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    642
  • دانلود: 

    271
چکیده: 

کشف ناهنجاری به معنای یافتن نمونه هایی است که با اکثریت هنجار و عادی داده ها تفاوت دارند. یکی از اساسی ترین چالش هایی که در سر راه انجام این کار مهم وجود دارد این است که نمونه های برچسب خورده، به ویژه برای کلاس ناهنجار کمیاب و گاه نایاب هستند. ما در این مقاله روشی را پیشنهاد می کنیم که برای کشف ناهنجاری تنها از داده های هنجار استفاده می کند. این روش بر مبنای شبکه های عصبی تاسیس شده که کد کننده خودکار نام دارند و در مطالعات یادگیری عمیق موردتوجه هستند. یک کد کننده خودکار ورودی خود را در خروجی بازتولید کرده و خطای بازسازی را به عنوان رتبه ناهنجاری مورداستفاده قرار می دهد. ما برای ساخت کد کننده، به جای نورون های معمولی از بلوک های LSTM استفاده کرده ایم. این بلوک ها درواقع نوعی از شبکه های عصبی بازگشتی هستند که در کشف و استخراج وابستگی های زمانی و مجاورتی مهارت دارند. نتیجه به کارگیری کد کننده خودکار مبتنی بر بلوک های LSTM برای کشف ناهنجاری نقطه ای در ده نمونه از دادگان های رایج نشان می دهد که این روش در استخراج مدل درونی داده های هنجار و تشخیص داده های ناساز موفق بوده است. معیار AUC مدل مذکور، تقریبا در تمامی موارد از AUC یک کد کننده خودکار معمولی و روش مشهور ماشین بردار پشتیبان تک کلاسه یا OC-SVM بهتر است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 642

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 271 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

تحقیقات مالی

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    25
  • شماره: 

    4
  • صفحات: 

    557-576
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    249
  • دانلود: 

    87
چکیده: 

هدف: امروزه، پیش بینی قیمت در بازارهای مختلف، به بخش حیاتی و جدایی ناپذیری از بازار دارایی ها تبدیل شده است. دانستن اینکه قیمت محتمل یک دارایی همچون مسکن، در آینده به چه میزان است، برای سرمایه گذاران ارزش اطلاعاتی بسیار زیادی دارد. این در حالی است که با توجه به مواجه شدن اقتصاد مسکن با شوک های قیمتی و نوسان های شدید بازارهای موازی، پیش بینی زمان صحیح برای سرمایه گذاری در مسکن، به دغدغه ای برای ذی نفعان این بخش تبدیل شده است. بررسی روند تحولات قیمت مسکن در ایران، از این حکایت دارد که هم راستا با سطح قیمت ها و شاخص های کلان دیگر، قیمت مسکن نیز روند مشابهی را طی می کند؛ اما تغییرات قیمت مسکن در مقایسه با تغییرات سایر شاخص های خُرد و کلان اقتصادی متفاوت است. این موضوع آنجا پیچیده تر می شود که در تحلیل شاخص قیمت مسکن با داده های مختلف کمّی و کیفی و همچنین داده های تصادفی، پراکنده و غیرساخت یافته مواجهیم که پیاده سازی مدل های ریاضی را برای آن ها بسیار سخت می سازد. هدف مقاله طراحی یک مدل هوش مصنوعی با بیشترین انعطاف پذیری نسبت به تنوع داده های ورودی و کمترین میزان خطا در بخش خروجی است. همچنین، پیاده سازی مدل با داده های واقعی نیز، هدف ضمنی دیگر پژوهش است تا کارایی مدل در شرایط واقعی بازار بررسی شود.روش: مدل های هوش مصنوعی این قابلیت را دارند که گستره وسیعی از داده ها را دریافت کنند و برای رسیدن به خروجی مشخص، هم زمان آن ها را پردازش کنند. در موضوعات مالی، این ویژگی ها باعث می شود که اثربخشی و دقت مدل افزایش یابد. الگوریتم طراحی شده در این پژوهش، بر پایه شبکه های عصبی بازگشتی است و الگوریتم LSTM با توجه به قابلیت حفظ اطلاعات گذشته، در پیش بینی سری های زمانی استفاده شده است. در هر دو دسته از سری های زمانی تک متغیره و چندمتغیره، از معماری stacked-LSTM استفاده شده استیافته ها: در این کار پژوهشی با استفاده از مجموعه داده های مراجع رسمی، همچون بانک مرکزی ایران و مرکز آمار ایران، متغیرهای تأثیرگذار در قیمت مسکن، در قالب یک ماتریس هم بستگی تحلیل شده است و پس از انتخاب متغیرهایی که روی قیمت مسکن بیشترین اثرگذاری دارند، میانگین قیمت مسکن تهران پیش بینی شده است. یافته های این پژوهش نشان می دهد که قیمت طلا، قیمت ارز، شاخص بهای کالا و خدمات و همچنین حجم نقدینگی، بیشترین هم بستگی را با قیمت مسکن داشته اند. با استفاده از داده های این شاخص های اقتصادی، پیش بینی هایی با دقت های بسیار زیاد به دست آمد.نتیجه گیری: در بین چهار مدل ساخته شده در این پژوهش، بهترین پیش بینی، به مدل stacked-LSTM چندمتغیره با متغیرهای کلان اقتصادی، با بیشترین هم بستگی با قیمت مسکن تعلق یافت. اعتبارسنجی مدل ها با میانگین درصد قدرمطلق خطا محاسبه و برآورد شده است. وجه مشترک نتایج به دست آمده در همه مدل ها، نمایش قابلیت و کارایی مطلوب الگوریتم LSTM است که برای داده های بیش از دو دهه بازار مسکن تهران، به منظور تخمین قیمت های آتی استفاده شده است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 249

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 87 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button